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Abstract
The quasi-transverse ultrasound absorption during anharmonic processes of the scattering in
cubic crystals with positive (Ge, Si, diamond and InSb) and negative (KCl and NaCl)
anisotropies of the second-order elastic moduli is studied. Mechanisms underlying the
relaxation of the slow quasi-transverse mode by two slow (the SSS mechanism) or two fast (the
SFF) modes are discussed in the long-wavelength approximation. Angular dependences of the
ultrasound absorption for the SSS, SFF and Landau–Rumer relaxation mechanisms are
analyzed in terms of the anisotropic continuum model. The full absorption of the slow
quasi-transverse mode is determined. It is shown that the SSS and SFF relaxation mechanisms
are due to the cubic anisotropy of the crystals, leading to the interaction between noncollinear
phonons. Two most important cases—the wavevectors of phonons are in the cube face plane or
the diagonal planes—are considered. In crystals with a considerable anisotropy of the elastic
energy (Ge, Si, InSb, KCl and NaCl) the total contribution of the SSS and SFF relaxation
mechanisms to the full absorption is either several times or one to two orders of magnitude
larger than the contribution from the Landau–Rumer mechanism depending on the direction.
Much of the dominance of the former relaxation mechanisms over the Landau–Rumer
mechanism is explained by second-order elastic moduli.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The relaxation of quasi-transverse phonons and the ultrasound
absorption in cubic crystals with competition of the defect
and anharmonic scattering processes was considered in [1, 2].
Dependences of the transverse ultrasound absorption on the
wavevector direction were analyzed in terms of the anisotropic
continuum model for the Landau–Rumer mechanism [3] when
the merging of a transverse and a longitudinal phonon produces
a longitudinal phonon (T + L → L). In accordance with
the views established in the literature [1–7], this relaxation
mechanism is the main one for transverse phonons in normal
three-phonon scattering processes. It was taken as the main
mechanism of the relaxation of transverse thermal phonons

in calculating the lattice heat conductivity [8–11]. In the
long-wavelength approximation h̄ωλq � kBT (T being
the temperature and ωqλ the frequency of a phonon with
a wavevector q and a polarization λ) the Landau–Rumer
mechanism gives a well known linear dependence [1–7] of
the ultrasound absorption on the wavevector of the form
αλTLL ∼ qT 4. Much less attention was attached to the
study of anharmonic relaxation processes involving three
transverse phonons in different vibrational branches (TTT
mechanisms). According to the estimates made in terms of
the isotropic medium model [3–7], these relaxation processes
are inefficient. Firstly, transverse modes are degenerate in
the case of isotropic media and only collinear phonons can
participate in TTT mechanisms [1–4]. If the dispersion
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of phonons is taken into account, the probability of the
phonon scattering for this scattering mechanism becomes zero.
Therefore, relaxation processes involving three transverse
phonons can take place in isotropic media only if the damping
of phonon states is taken into account, with the damping effect
dominating over the dispersion effect [4–7]. Secondly, it was
shown [12] that in isotropic media the matrix element of the
interaction between collinear phonons and, correspondingly,
the ultrasound absorption in TTT mechanisms become zero.
However, the isotropic medium approximation [3–11], which
is commonly used to estimate the probability of various
scattering processes, is inadequate for germanium, silicon,
diamond and other semiconductor crystals having cubic
symmetry and a considerable anisotropy both of the harmonic
and the anharmonic energy. It should be noted that the
anisotropy of the spectrum and the presence of degeneracy
points in vibrational modes of transverse phonons lead to
considerably different rates of the relaxation of longitudinal
phonons in some anharmonic processes of scattering in
cubic crystals as compared to isotropic media [13, 14].
A convenient approximation for the study of anharmonic
relaxation processes is the anisotropic continuum model. In
this model, the harmonic energy of cubic crystals is expressed
as three second-order elastic moduli, while the anharmonic
energy as six third-order elastic moduli. The second-and third-
order elastic moduli have been determined experimentally for
a number of cubic crystals. Therefore, the phonon relaxation
rates calculated in terms of this model present a reliable basis
for the interpretation of experimental data on the ultrasound
absorption and the phonon transport in cubic crystals.

The ultrasound absorption during anharmonic relaxation
processes involving three transverse phonons was studied
in [15–17]. However, the approximations used in [15–17] are
inadequate for cubic crystals. Firstly, the researchers disregard
the intersections between the spectra of quasi-transverse
vibrational branches, leading to an abrupt (stepwise) change
of the group velocity in the vicinity of those intersections.
Secondly, the effect of the cubic anisotropy on the phonon
polarization is not considered in the matrix element of the
three-phonon scattering processes: the vibrational modes are
assumed to be purely transverse modes as in isotropic media.
The procedure of averaging over directions of polarization
vectors in the matrix element, which they use in this case, is
incorrect for cubic crystals. Thirdly, the ultrasound absorption
is calculated for all symmetric directions, but the form of the
conservation law adopted by the researchers allows the correct
analysis of the [001] direction only (see appendix). Because
of this restriction, the full picture is obscure and optimal
directions, in which the transverse ultrasound absorption is
maximum and minimum, cannot be determined.

It is known [4, 18] that quasi-longitudinal or quasi-
transverse vibrations propagate in cubic crystals, while pure
modes propagate only in symmetric directions such as [100],
[110] and [111]. The analysis of the spectrum and the
polarization of vibrational branches [19] demonstrated that the
contribution of the transverse component to quasi-longitudinal
vibrations in cubic crystals is small and can be neglected.
Conversely, the contribution of the longitudinal components to

Table 1. Thermodynamic elasticity moduli for the cubic crystals
under study, in 1012 dyne cm−2. The data are adopted from [4, 27].

Ge Si Diamond InSb KCl NaCl

c11 1.289 1.657 10.76 0.672 0.398 0.487
c12 0.483 0.638 1.25 0.367 0.062 0.124
c44 0.671 0.796 5.758 0.302 0.0625 0.126
�C 0.54 0.57 2.01 0.3 −0.211 −0.11
k − 1 0.87 0.67 0.4 0.81 −0.63 −0.31
c111 −7.10 −8.25 −62.6 −3.56 −7.01 −8.8
c112 −3.89 −4.51 −22.6 −2.66 −0.571 −0.571
c123 −0.18 −0.64 1.12 −1.0 0.284 0.284
c144 −0.23 0.12 −6.74 0.16 0.127 0.257
c155 −2.92 −3.10 −28.6 −1.39 −0.245 −0.611
c456 −0.53 −0.64 −8.23 −0.004 0.118 0.271
c̃155 −1.63 −1.9 −5, 4 −1.54 −0.61 −1.41
c̃111 28.01 32.4 138.1 20.96 1.62 8.23
c̃112 −3.25 −4.1 −10.24 −1.98 −1.11 −1.37
c456 + c44 0.14 0.156 −2.47 0.31 0.181 0.397
c̃155 −�C −2.17 −2.47 −7.41 −1.84 −0.4 −1.3

the quasi-transverse modes is not small and the longitudinal
component of these modes should be considered in the
relaxation rates of quasi-transverse phonons when averaging
over the polarization vectors. Thus, the approximations used
in [15–17] can lead to large errors in calculating the relaxation
rate of transverse phonons. In the present study the effect of
the cubic anisotropy on the spectrum and the polarization of
phonons are taken into account exactly. It was shown [19]
that the anisotropy of the elastic energy in cubic crystals is
determined by the dimensionless parameter k−1 = �C/(c11−
c44) (here �C = c12 + 2c44 − c11, with ci j being second-order
elastic moduli). The parameters k − 1 and�C have like signs.
Then all cubic crystals can be classified into those with the
positive (�C > 0) and the negative (�C < 0) anisotropy
of the second-order elastic moduli. This parameter is zero in
isotropic media. The first type includes Ge, Si, diamond, InSb,
GaSb, GaAs, and other crystals. KCl, NaCl, CaF2, etc crystals
are referred to the second type [19] (see table 1). The detailed
analysis of elastic waves in cubic crystals [19] demonstrated
that the physical basis of the classification proposed in [19]
is the qualitatively different anisotropy of the spectra and
the behavior of polarization vectors in cubic crystals of the
two types. The formal anisotropy factor A = 2c44/(c11 −
c12), which was introduced in [20], also characterizes the
elastic anisotropy of cubic crystals. However, it does not
appear in either the equation for the spectra of vibrational
branches or the definition of the polarization vectors (see
below). It should be noted that the sign of the parameter
A − 1 = �C/(c11 − c12) coincides with the sign of �C .
It was shown [17, 18] that in cubic crystals of the first and
second types not only the spectrum and polarization vectors
of phonons, but also the behavior of relaxation characteristics,
such as the ultrasound absorption and the relaxation rate of
quasi-transverse vibrational modes, are qualitatively different
for both the scattering by defects and the Landau–Rumer
mechanism.

In what follows we shall consider processes of the merging
of an ultrasound wave and a transverse thermal phonon,
leading to the formation of a transverse thermal phonon like
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T λ
1 + T λ1

2 → T λ1
3 (TTT mechanisms) (λ and λ1 being the

phonon polarizations that acquire two values, t1 as the fast
quasi-transverse mode and t2 as the slow quasi-transverse
mode). These scattering processes can lead to dependences
of the absorption of long-wavelength transverse phonons of
the slow mode having the same form as the Landau–Rumer
mechanism, αt2

TTT ≈ qT 4, and, hence, can compete with this
mechanism [3]. We shall show further that the TTT relaxation
mechanisms involve both collinear and noncollinear phonons,
with the greatest contribution made by the scattering to large
angles. Since such scattering processes are impossible in
isotropic media, it can be stated that anharmonic relaxation
processes involving three transverse phonons in such crystals
as Ge, Si, diamond, InSb, etc are due exclusively to the
cubic anisotropy of these crystals. So, the quasi-transverse
ultrasound absorption by the TTT mechanism should be
calculated taking into account the anisotropy of both the
harmonic and the anharmonic energy of the crystals.

We shall analyze angular dependences of the quasi-
transverse ultrasound absorption by TTT mechanisms for two
types of cubic crystals with positive (Ge, Si, diamond and
InSb) and negative (KCl and NaCl) anisotropies of second-
order elastic moduli. Values of the TTT absorption will be
compared with those for the Landau–Rumer mechanism [2];
the full absorption for the slow quasi-transverse mode will
be determined. Unlike [15–17], we shall analyze angular
dependences of the ultrasound absorption for two most
important cases, namely (1) the sound wavevectors in the
cube face plane, and (2) those in the diagonal plane, making
it possible to determine optimal directions, in which the
absorption of the slow quasi-transverse mode reaches the
maximum and minimum. Considering the results obtained
in [12] for isotropic media, we shall discuss in detail the
problem of the scattering of collinear and noncollinear phonons
in cubic crystals and their role in the ultrasound absorption.

2. Absorption of quasi-transverse ultrasound in cubic
crystals during anharmonic scattering processes

If the inequality ωqλτ
λ(q, T ) � 1 (τλ(q, T ) = 1/νλ(q, T )

and ωqλ being the frequency of a phonon with a wavevector q
and a polarization λ) is fulfilled, the ultrasonic wave absorption
αλ (q) with a wavevector q and a polarization λ is proportional
to the full relaxation rate of phonons of the given polarization
νλ(q, T ) (see, e.g., [2, 4]):

αλ(q, T ) = 4.34νλ(q, T )

Sλ(q)
(dB cm−1), (1)

where Sλ (q) = Sλ(θ, ϕ) is the phonon phase velocity, which
depends on the angular variables θ and ϕ of the vector
q, and T is the temperature. Experimental studies of the
ultrasound absorption [4, 21] demonstrated that the inequality
ωqλτ

λ(q, T ) � 1 is fulfilled at sufficiently low temperatures:
below 50, 100 and 300 K for germanium, silicon and diamond
crystals respectively. Here we shall restrict ourselves to the
absorption of the long-wavelength transverse ultrasound when
h̄ωqt � kBT . In what follows we shall only consider the
intervals of temperatures and wavevectors q over which these

inequalities hold. If the inequality ωqλτ
λ(q, T ) � 1 is

fulfilled, the dominant contribution to the volume absorption of
ultrasonic waves is due to the scattering by defects, including
the isotopic scattering and normal processes of the phonon–
phonon scattering (see, e.g., [4]). The scattering by defects
is considered in [2]. Here we shall restrict ourselves to the
analysis of anharmonic relaxation processes involving three
quasi-transverse phonons.

The possible variants of the relaxation of transverse
phonons in cubic crystals are the following processes of the
merging of two transverse phonons, which is followed by the
formation of a transverse phonon:

(1) ST1 + ST2 → ST3 FT1 + FT2 → FT3,

ωλq1
= ωλq3

− ωλq2
,

(2) ST1 + FT2 → FT3, ωt2
q1

= ωt1
q3

− ωt1
q2
,

FT1 + ST2 → ST3, ωt1
q1

= ωt2
q3

− ωt2
q2

(3) FT1 + FT2 → ST3, ωt1
q1

= ωt2
q3

− ωt1
q2
,

(4) FT1 + ST2 → FT3, ωt1
q1

= ωt1
q3

− ωt2
q2
,

ST1 + ST2 → FT3, ωt2
q1

= ωt1
q3

− ωt2
q2
.

(2)

The processes (1) involve three transverse phonons
belonging to either the upper (FT, λ = t1) or the lower
(ST, λ = t2) vibrational branch. It was already noted that
collinear phonons can only participate in the processes (1) in
isotropic media [4–7]. If the dispersion of phonons is taken into
account, the probability that phonons are scattered through this
scattering mechanism tends to zero. It should be noted that
the dispersion of the transverse vibrational branches is very
appreciable in such crystals as Ge, Si and InSb. Processes like
(1) can take place in isotropic media if the damping of phonon
states is considered. In this case, the damping should dominate
over the dispersion [4–7]. The correct analysis of the effect of
the damping of phonon states in the TTT mechanisms requires
finding the total relaxation frequency of transverse thermal
phonons, which is determined by all relaxation processes. The
analysis of this mechanism [7] for isotropic media taking into
account the damping of phonon states gives the wavevector-
independent absorption αλTTT ∼ q0T 4ν(T ). We shall show that
in the case of the processes (1) ST1 + ST2 → ST3 (the SSS
mechanism) the energy conservation law is strictly fulfilled
for noncollinear phonons too. They give dependences of the
long-wavelength ultrasound absorption of the same form as
those for the Landau–Rumer mechanism: αt2

SSS ∼ qT 4. It
will be shown that in many cubic crystals this mechanism
makes the predominant contribution to the full absorption of
the slow quasi-transverse mode. The processes like (2) (the
SFF mechanism) are analogous to processes of the relaxation
of transverse phonons in the case of the Landau–Rumer
mechanism. They give dependences of the long-wavelength
ultrasound absorption of the form αt2

SFF ∼ qT 4 and can also
compete with the Landau–Rumer mechanism [2, 4]. In the
processes (2) the energy of a scattered transverse phonon
equals the difference of the energies of phonons belonging to
one and the same transverse vibrational branch. Obviously,

3
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this mechanism is impossible in isotropic media because the
transverse branches are degenerate and the phonon spectrum
is isotropic. Therefore, the higher is the cubic anisotropy (the
more the parameter k differs from unity), the more efficient
are the relaxation mechanisms connected with processes like
(1) and (2). The type (3) processes are impossible because
the energy conservation law cannot be fulfilled for these
processes. Processes like (4) are analogous to processes of
the relaxation of longitudinal phonons through the Herring
mechanism [13, 14] (L1 + ST2 → FT3, ω

L
q1

= ωt1
q3

− ωt2
q2
). In

the processes (4) the energy of a scattered transverse phonon
equals the difference of the energies of the upper and lower
transverse vibrational branches. This mechanism leads to
the dependence of the long-wavelength transverse ultrasound
absorption of the form αλTTT ∼ q2T 3, which is less efficient
in the long-wavelength approximation than the one for the
Landau–Rumer mechanism, αλTLL ∼ qT 4 [3]. In what follows
we shall present calculations of the absorption of slow quasi-
transverse modes for the processes (1) and (2) in cubic crystals.
Then it will be possible to determine the full absorption of slow
quasi-transverse modes as the long-wavelength approximation.
Other variants of the relaxation of ST modes leading to the
dependence of the Landau–Rumer type are unavailable.

The initial expression for the relaxation rate of phonons
with a polarization λ1 has the form [9]

νphN(q1, λ1) = π h̄4

(2ρkBT )3
1

V

∑

q2q3

λ2λ3

sh
( z1

2

) · δq1+q2+q3,0

z1z2z3sh
(

z2
2

)
sh

( z3
2

)

× ∣∣V λ1λ2λ3
q1q2q3

∣∣2 {
2δ

(
ωq1λ1 + ωq2λ2 − ωq3λ3

)

+ δ
(
ωq1λ1 − ωq2λ2 − ωq3λ3

)}
. (3)

Here ρ is the density, V is the normalization volume, T is the
temperature, the polarization λ takes two values t1 and t2, and
zn = h̄ωλn

qn/kBT . In expression (3) we shall only consider
the first term in the braces, in which the merging of two
transverse phonons produces a transverse phonon. Processes
of the decomposition of a transverse phonon to two transverse
phonons are not discussed since they can be considerable for
thermal and high-frequency phonons.

In the anisotropic continuum model the spectrum of
phonons with a polarization λ and a wavevector much smaller
than the Debye wavevector qd can be written as

ωλq = Sλ(θ, ϕ)q. (4)

The spectrum anisotropy is determined by the anisotropy of the
phase velocity Sλ(θ, ϕ), which depends on the angles θ and ϕ
of the vector q. In the system of coordinates connected with
the cube edges we have [19]

Sλ(θ, ϕ) =
√

c44

ρ

(
1 + c11 − c44

c44

(
1

3
+ Zλ

))1/2

,

Zt1,t2 = 2

3
r cos

(
Q

3
∓ 2π

3

)
, Q = arccos q,

q =
{

1 + 4.5(k2 − 1)ξ + 13.5η(k − 1)2(2k + 1)

r 3

}
,

r =
√

1 + 3(k2 − 1)ξ, k = c12 + c44

c11 − c44

(5)

where ci j denotes the second-order elastic moduli; ξ = n2
1n2

2 +
n2

1n2
3 + n2

2n2
3 and η = n2

1n2
2n2

3 are cubic harmonics; n = q/q =
(sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)) is a unit wavevector of
a phonon. The indices t1 and t2 correspond to the ‘fast’ (the
upper) and the ‘slow’ (the lower) transverse vibrational modes.
The polarization vectors of phonons in different vibrational
branches are defined by the expressions [14]

eλj = 1

Aλ

{
n j

ψλj

}
Aλ = ±

√√√√√
∑

j

n2
j

(
ψλj

)2 ,

(eλn) = 1

Aλ

∑

j

n2
j

ψλj
, ψλj = ελ + (k − 1)n2

j .

(6)

It is seen from (5) and (6) that just the parameter k − 1
characterizes the influence of the elastic anisotropy on the
spectrum and polarization vectors of vibrational modes in
cubic crystals. The analysis [19] revealed that the contribution
of longitudinal components to the quasi-transverse modes is
not small. According to [19], the maximum contribution
is 16.5% in Ge, 10% in Si, 8% in diamond, and up to
27% in KCl crystals. Therefore, in what follows we shall
calculate the absorption considering the contribution of the
longitudinal component to transverse–longitudinal vibrations
as an approximation linear in this component. To determine
the velocity Sλ(θ3, ϕ3) from the momentum conservation law,
we shall express the angular variables θ3 and ϕ3 of the vector
q3 as the angular variables θ1, ϕ1 and θ2, ϕ2 of the wavevectors
q1 and q2, and find the corresponding cubic harmonics:

ξ3 = (1 − ψ3)ψ3 + ψ2
4 , η3 = ψ3ψ

2
4 ,

ψ3 = (cos θ3)
2

= (cos θ2 + y cos θ1)
2/(1 + y2 + 2y cos θ12),

y = q1/q2, (7)

ψ4 = (sin θ3)
2 sinϕ3 cos ϕ3

= (sin θ2 sinϕ2 + y sin θ1 sinϕ1)

(1 + y2 + 2y cos θ12)

× (sin θ2 cos ϕ2 + y sin θ1 cos ϕ1),

cos θ12 = (n1n2) = sin θ1 cos(ϕ2 − ϕ1) sin θ2 + cos θ1 cos θ2.

(8)

In the long-wavelength limit h̄ωqt � kBT (q1 � q2, q3)

at temperatures much lower than the Debye temperature the
integral over z2 in (3) is calculated exactly, and for the
ultrasound absorption in the SSS (λ1 = t2 and λ2 = λ3 = t2)
and SFF (λ1 = t2 and λ2 = λ3 = t1) processes we have

αt2
TTT(θ1, ϕ1, T ) = At2

TTTzt2
1 T 5,

At2
TTT = At2

SSS + At2
SFF = At2

0TTT J t2
TTT(θ1, ϕ1) (dB cm−1 K−5),

J t2
TTT(θ1, ϕ1) = J t2

SSS(θ1, ϕ1)+ J t2
SFF(θ1, ϕ1),

At2
SSS(θ1, ϕ1) = At2

0TTT J t2
SSS(θ1, ϕ1),

At2
SFF(θ1, ϕ1) = At2

0TTT J t2
SFF(θ1, ϕ1), zλ1 = h̄ωλq1

kBT
,

(9)

4
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At2
0TTT = 4.34π3k5

B

15h̄4ρ3 (St2(θ1, ϕ1))
2 (St

100)
8
,

St
100 =

(
c44

ρ

)1/2
(10)

J λ1
TTT(θ1, ϕ1) =

∑

λ2

∫ 1

−1
dx

1

π

∫ 2π

0
dϕ2 δ

(
cos θ12 − S∗∗

λ1λ2λ2

)

× I λ1λ2λ2
TTT (θ1, ϕ1, θ2, ϕ2)

(S̃λ2
2 )

8
, x = cos θ2 (11)

S∗∗
λ1λ2λ2

= S̃λ1
1

S̃λ2
2

−�λ2,

�λ2 (θ1, ϕ1, θ2, ϕ2) = lim
y→0

{
1

y

[
S̃λ2

3 − S̃λ2
2

S̃λ2
2

]}
.

S̃λ1
1 = Sλ1

1

St
100

, y = q1

q2
.

(12)

The exact expression for the matrix element of the three-
phonon scattering processes [2, 22] will only include the
terms that are linear in longitudinal components of quasi-
transverse vibrations, while the terms proportional to quadratic
combinations of (e1n1), (e2n2), (e3n3) will be neglected. The
error of this approximation is about 1% in Ge, InSb, GaSb and
GaAs, and less than 1% in Si and diamond. Then for the square
of the matrix element in the long-wavelength approximation
(q2

∼= q3 and n2
∼= n3) we have for all the relaxation

variants (1)–(4)

I λ1λ2λ3
TTT (θ1, ϕ1, θ2, ϕ2) = 1

4

{
c̃111

∑

i

e1i e2i e3i n1i n
2
2i

+ c̃112

∑

i

[e1ie2i n1i n2i(e3n3)

+ e1i e3i n1i n2i(e2n2)+ e2i e3i n
2
2i (e1n1)]

+ c̃155

∑

i

[e1ie2i e3i (n1i + 2 cos θ12n2i)

+ e1i e2i n2i [n1i(e3n2)+ n2i (e3n1)]

+ e1i e3i n2i [n1i(e2n2)+ n2i (e2n1)]

+ e2i e3i n1i 2n2i(e1n2)]
+ (c̃155 −�c)

∑

i

n1i n
2
2i [e1i(e2e3)

+ e2i(e1e3)+ e3i(e1e2)]
+(c144 + c456)[(e2n2)(e3n1)(e1n3)+(e3n3)(e1n2)(e2n1)]
+ (c12 + c144)[(e2e3)(e1n1)+ (e1e3)(e2n2) cos θ12

+ (e1e2)(e3n3) cos θ12]
+ (c44 + c456)[(e2e3)(e1n2)2 cos θ12 + (e1e2)[(e3n1)

+ (e3n2) cos θ12] + (e1e3)((e2n1)+ (e2n2) cos θ12)]
}2

,

(13)

where

c̃112 = c112 − c123 − 2c144, c̃155 = c155 − c144 − 2c456,

c̃111 = c111 − 3c112 + 2c123 + 12c144 − 12c155 + 16c456,

�C = c12 + 2c44 − c11,

(14)

where ci jk denotes thermodynamic third-order elastic moduli
and e1,2,3 stands for polarization vectors. Notice that the
terms including third-order elastic moduli c̃111, c̃112, c̃155 and
�C correspond to the anisotropic scattering. These terms
distinguish cubic crystals from an isotropic medium: they turn
to zero when changing to the isotropic medium model. The
other terms in the formula (13) correspond to the isotropic
scattering. The expression for the matrix element (13) allows
analysis of the absorption of quasi-transverse modes with all
the relaxation variants in TTT mechanisms. In the specific
case of the relaxation processes (1) and (2) the expression (13)
for the square of the matrix element is considerably simplified
because in the long-wavelength approximation at n2

∼= n3 and
λ2 = λ3 we have e2

∼= e3. Then

I λ1λ2λ2
TTT (θ1, ϕ1, θ2, ϕ2) = 1

4

{
c̃111

∑

i

e1i e
2
2i n1i n

2
2i

+ c̃112

∑

i

[
2e1i e2i n1i n2i (e2n2)+ e2

2i n
2
2i (e1n1)

]

+ c̃155

∑

i

[
e1i e

2
2i (n1i + 2n2i cos θ12)

+ 2e1i e2i n2i [n1i(e2n2)+ n2i(e2n1)] + 2e2
2i n1i n2i(e1n2)

]

+ (c̃155 −�c)
∑

i

[
n1i n

2
2i (e1i + 2e2i(e1e2))

]

+ 2(c144 + c456)(e2n2)(e2n1)(e1n2)

+ (c12 + c144) [(e1n1)+ 2(e1e2)(e2n2) cos θ12]

+ 2(c44 + c456)[(e1n2) cos θ12 + (e1e2)

× [(e2n1)+ (e2n2) cos θ12]

}2

. (15)

In the approximation of pure modes (e2n2) = (e1n1) = 0,
which is discussed in [12], we obtain

I λ1λ2λ2
TTT (θ1, ϕ1, θ2, ϕ2) = 1

4

{
c̃111

∑

i

e1i e
2
2i n1i n

2
2i

+ c̃155

∑

i

[
e1i e

2
2i (n1i + 2n2i cos θ12)

+ 2e1i e2i n
2
2i (e2n1)+ 2e2

2i n1i n2i(e1n2)
]

+ (c̃155 −�c)
∑

i

n1i n
2
2i [e1i + 2e2i(e1e2)]

+ 2(c44 + c456) [(e1n2) cos θ12 + (e1e2)(e2n1)]

}2

. (16)

Notice that in an arbitrary direction of the wavevector q1

the matrix element (16) includes a term proportional to the
third-order elastic modulus c̃111. This modulus is one order
of magnitude larger than the other third-order moduli in the
majority of cubic crystals, but its sign is opposite to the sign
of the initial modulus c111 (see [22], table 1). It is responsible
for the small deviation of the relaxation characteristics in cubic
crystals from those calculated in the context of the isotropic
medium model [12]. When changing to the isotropic medium
model, which is discussed in [12], the terms including the
third-order elastic moduli c̃111, c̃155 and �C become zero and,
hence, only the last term remains in (16), which determines
the matrix element for the isotropic medium. The result
obtained in [12] becomes obvious from this expression. For the
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Figure 1. Angular dependences of the square of the matrix element
during the scattering of collinear phonons in the SSS (a) and SFF (b)
relaxation mechanisms for sound wavevectors in the cube face plane
in Ge (1), Si (2), InSb (3) and diamond (4).

scattering of collinear phonons n1 = n2 and the matrix element
identically turns to zero because isotropic media pass pure
modes when (e2n2) = (e1n1) = 0. Thus, for the scattering of
collinear phonons in isotropic media the square of the matrix
element identically turns to zero in an arbitrary direction of the
wavevector of a phonon.

The situation is considerably different for the cubic
crystals. The consideration of the cubic anisotropy of the
harmonic and anharmonic energies of the crystals leads to
nonzero values of the matrix element (15) for the scattering of
collinear phonons via the SSS and SFF relaxation mechanisms
only when the slow ST mode is a quasi-transverse mode whose
longitudinal component is nonzero. The square of the matrix
element is zero if the slow ST mode is a purely transverse
mode. As can be seen from figures 1(a) and (b), in the
case of the wavevectors lying in the cube face plane and
the scattering of collinear phonons the squares of the matrix
elements for the SSS (I t2t2t2

TTT (θ1, 0, θ1, 0) ≡ ISSS(θ1, 0)) and
SFF (I t2t1t1

TTT (θ1, 0, θ1, 0) = ISFF(θ1, 0)) relaxation mechanisms
are nonzero. They turn to zero in the [001] and [101] directions
in all the crystals of the first group.

An exception is the diamond crystal, for which the
function ISSS(θ1, 0) becomes zero additionally at the angles
θ1 = π/4 ± π/10. These zeros are due to the mutual
compensation of the terms proportional to different elastic
moduli in (15) and an anomalously large value of the
third-order elastic modulus c̃111 in diamond (see table 1).
Conversely, in all the crystals of the second group (including
KCl and NaCl) the square of the matrix element for the SSS
and SFF relaxation mechanisms is zero at all values of the
angle θ1. This is because in the crystals of the second group
the slow ST mode for the wavevectors in the cube face plane
is a purely transverse mode with the polarization vector being
perpendicular to the cube face under consideration (see [19]).
It is easy to check that for this mode e1i n1i = 0 at all i and,
therefore, expression (15) becomes zero for the scattering of
collinear phonons (n1 = n2). In the case of the wavevectors
lying in the diagonal plane (ϕ1 = π/4), the square of the matrix
element I t2t2t2

TTT (θ1, π/4, θ1, π/4) = ISSS(θ1, π/4) is nonzero in
the crystals of the first group (Ge, Si, diamond and InSb) at
the angles 0 < θ1 < θ111 and π − θ111 < θ1 < π (θ111

being the angle between the z-axis and the [111] direction)
(see figure 2(a)). In this case, the slow ST mode is a quasi-
transverse mode with the polarization vector in the diagonal
plane. At the angles θ111 < θ1 < π − θ111 the slow ST mode is
a pure mode with the polarization vector being perpendicular to
the diagonal plane and the function ISSS(θ1, π/4) turns to zero
(see figure 2(a)). In the crystals of the second group the square
of the matrix element ISSS(θ1, π/4) is nonzero at the angles
θ111 < θ1 < π − θ111 (the mode t2 is a quasi-transverse mode
with the polarization vector lying in the diagonal plane) and is
zero at 0 < θ1 < θ111 and π − θ111 < θ1 < π (the mode t2 is
a pure mode with the polarization vector being perpendicular
to the diagonal plane) (see [19]). The same situation occurs
for the SFF relaxation mechanism (see figure 2(b)). With the
wavevectors in the diagonal plane (ϕ1 = π/4), the square of
the matrix element I t2t1t1

TTT (θ1, π/4, θ1, π/4) = ISFF(θ1, π/4)
for the SFF relaxation mechanism is nonzero at the angles
0 < θ1 < θ111 and π − θ111 < θ1 < π in the crystals of
the first group and at the angles θ111 < θ1 < π − θ111 in the
crystals of the second group. The above analysis suggests that
the angular dependences of the square of the matrix element are
qualitatively different for the scattering of collinear phonons in
cubic crystals with positive and negative anisotropies of the
elastic energy.

Let us compare expression (16) with the result obtained
in [16]. For the particular case studied in [16] (the wavevector
q1 is directed along the z-axis (n1 = {0, 0, 1})), e1i n1i = 0 at
all i and cos θ12 = cos θ2. The first term in formula (16), which
is proportional to the modulus c̃111, vanishes and we have for
the square of the matrix element

I λ1λ2λ2
TTT (θ1, ϕ1, θ2, ϕ2) =

{
c̃155

∑

i

[e1i e
2
2i n2i cos θ2

+ e1i e2i n
2
2i (e2n1)+ e2

2i n1i n2i (e1n2)]
+ (c̃155 −�c)

∑

i

n1i n
2
2i e2i(e1e2)

+ (c44 + c456) [(e1n2) cos θ2 + (e1e2)(e2n1)]

}2

. (16a)
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Figure 2. Angular dependences of the square of the matrix element
during the scattering of collinear phonons in the SSS (a) and SFF (b)
relaxation mechanisms for sound wavevectors in the diagonal plane
in Ge (1), Si (2), InSb (3) and diamond (4).

In the notation [16] values c̃155 = P1, �C = 2D and
c44 + c456 = I ; therefore, in the case of the TTT mechanism
expression (16a) includes the same third-order elastic moduli
as in [16]. However, the angular dependences of the matrix
element (16a) for the TTT mechanism are very different from
those in [16]. To verify this, let us determine polarization
vectors of the pure modes corresponding to the modes t1 and t2
in cubic crystals by the following method [19]:

et1
0 = (− sinϕ, cos ϕ, 0),

et2
0 = (cos θ cos ϕ, cos θ sinϕ,− sin θ),

(17)

where the vector et1
0 is perpendicular to the plane ϕ = const

and et2
0 lies in the plane ϕ = const and is perpendicular

to the vector n = (sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)).
Substituting (17) into (16a) gives for the scattering processes

(1) and (2) in directions like [001] (θ1 = 0, ϕ1 = 0)

I t2,t2,t2
TTT (θ1, ϕ1, θ2, ϕ2) = (sin θ2 cos θ2)

2
{

P1 cosϕ2((cos θ2)
2

+ sin θ2 cos θ2)(cos ϕ2)
2

− (P1 − 2D) (cos θ2)
2 sinϕ2

}2

I t2,t1,t1
TTT (θ1, ϕ1, θ2, ϕ2) = (sin θ2 cos θ2 cos ϕ2)

2

× {
P1(sinϕ2)

2 + I
}2

I t1,t2,t2
TTT (θ1, ϕ1, θ2, ϕ2) = (

sin θ2(cos θ2)
3 sinϕ2

)2

× {
P1(cos ϕ2)

2 + P1 − 2D
}2
.

(18)

Notice that in the case of collinear phonons (θ2 = 0, ϕ2 = 0)
the matrix elements (16) turn to zero similarly to expression
(2) in [16]. This is in agreement with the result [12] obtained
in the isotropic medium model. The comparison of (18)
and expressions (2) in [16] shows that they are considerably
different. Firstly, with all the variants of the transverse phonon
relaxation via the processes (1) and (2) the author of [16]
obtained the same result for the matrix element after two
averaging procedures: over the phonon polarization vectors
and then over the angles ϕ2. Obviously, the procedure of
the matrix element averaging over the phonon polarization
vectors [16] is not correct for cubic crystals. Secondly, the
averaging of the square of the matrix element over the angles
ϕ2 in [16] introduces an uncontrolled approximation (see below
expressions (19) and (20)). Notice that in the Landau–Rumer
mechanism (T + L → L) the expression for the matrix element
derived in [16] is correct [2].

For calculating the integral J λTTT(θ1, ϕ1) in (12), it is
necessary first to find solutions to the equation

Fλ1λ2(θ1, ϕ1, x, ϕ2)

= cos θ12 −
(

S̃λ1
1

S̃λ2
2

−�λ2(θ1, ϕ1, x, ϕ2)

)
= 0

for −1 � x � 1, x = cos θ2 (19)

and take the integral over x using the δ-function (in this case,
the roots of equation (19) x1 become functions of the angles
ϕ2, θ1, and ϕ1). Then the expression for J (θ1, ϕ1) assumes the
form

J λ1
TTT(θ1, ϕ1) =

∑

λ2, j

1

π

∫ 2π

0
dϕ2

I λ1λ2λ2
TTT

(
θ1, ϕ1, x j , ϕ2

)

(S̃λ2
2 )

8
∣∣∣F1

j

∣∣∣
,

F1
j = dF(θ1, ϕ1, x, ϕ2)

dx

∣∣∣∣x=x j (ϕ2,θ1,ϕ1).

(20)

Obviously, if the cubic anisotropy is taken into account in
the energy conservation law, the procedure of deriving the
roots of equation (19) can only be solved numerically. In
the appendix the functions Fλ1λ2(θ1, ϕ1, θ2, ϕ2) and �λ2 for
arbitrary directions of the wavevectors of phonons are written
in terms of the group velocity of phonons. It is shown that
the form of the conservation law adopted in [15–17] allows
correct analysis of the [001] direction only. Its use for the other
symmetric directions is invalid. It should be noted that �λ2 is
important for relaxation processes (1) and (2): it ensures the

7
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interaction of noncollinear phonons in the SSS mechanism and
considerably extends the interval of the angles at which long-
wavelength phonons of the mode t2 can be scattered by thermal
phonons of the upper vibrational mode in the SFF mechanism.
According to the estimates, in directions like [001] (θ1 = 0,
ϕ1 = 0) and [101] (θ1 = π/4, ϕ1 = 0) the maximum values
of�λ2 are as large as 0.6 in InSb crystals and 0.18 in diamond.
One might expect therefore that in such elastically anisotropic
crystals as Ge and InSb (k = 1.8) the TTT mechanisms will
be more significant than in diamond (k = 1.4). The numerical
analysis of equation (19) shows that it also possesses solutions
for noncollinear phonons in the case of the slow transverse
mode and the SSS (λ1 = t2 and λ2 = t2) and SFF (λ1 = t2 and
λ2 = t1) relaxation processes. As can be seen from figure 3(a),
in directions like [001] (θ1 = 0, ϕ1 = 0) two solutions exist for
the SSS relaxation processes in Ge, Si and InSb crystals: one
solution corresponds to the interaction of collinear phonons
(θ12 = θ2 = 0, figure 3(a), curves 5) and the other to
the interaction of noncollinear phonons (figure 3(a), curves
1, 2 and 3). The solution corresponding to the interaction
of collinear phonons (figure 3(a), curves 5) only exists for
the SFF relaxation processes in these crystals. In diamond
and NaCl crystals with a lower anisotropy of the harmonic
energy the SSS and SFF relaxation processes in directions
like [001] can only involve collinear phonons (figure 3(a),
curves 5). In KCl crystals, which are more anisotropic,
the energy conservation law permits the interaction of both
collinear (figure 3(a), curves 5) and noncollinear (figure 3(a),
curves 4, 4′ and 4′′) phonons. Three solutions exist for each
of the two relaxation mechanisms. The analysis performed
suggests that the dominant contribution to the SSS and SFF
relaxation rates in directions like [101] is due to the interaction
of noncollinear phonons. In directions like [001] (θ1 =
π/4, ϕ1 = 0) the solutions corresponding to the interaction
of collinear phonons exist only for the SSS mechanism and
are absent for the SFF relaxation mechanism in the crystals
under study. It is seen from figure 3(b) that for the SSS
mechanism equation (19) possesses solutions corresponding to
the scattering to the angles 48◦ < θ12 < 65◦ (three solution
regions, curves 1) and 35◦ < θ12 < 37◦ (six solution regions,
curves 1a) in Ge crystals. Roots which correspond to the
scattering to large angles in Ge crystals are absent in Si, while
the two domains of roots for the SSS mechanism are much
smaller than those in Ge (see the inset in figure 3(b), curves 3).
In the case of the SFF relaxation mechanism, the domains of
the roots of equation (19), which correspond to the interaction
of noncollinear phonons, are nearly equal in Ge and Si crystals
(see figure 3(b), curves 2 and 4).

As is shown in [1, 2], a simpler variant is available for
calculating the relaxation rates of phonons and this variant
eliminates the procedure of finding the roots of equation (19),
F(x, ϕ2, θ1, ϕ1) = 0, but requires calculating a double
integral J λTTT(θ1, ϕ1) instead of a single integral. It consists
in replacement of the δ-function in expression (11) by its
representation as a limiting process from the Lorentzian or

Figure 3. (a) Dependences of the angle θ12 between the sound
wavevector and a scattered phonon (θ2, ϕ2) on the angle ϕ2 according
to equation (19) in crystallographic directions like [001] (θ1 = 0,
ϕ1 = 0): the SSS relaxation mechanism in Ge (1), Si (2), InSb (3),
and KCl (4); the SFF relaxation mechanisms in Ge, Si and InSb
crystals (curve 5) and in KCl (curves 4′, 4′′ and 5); the SSS and SFF
relaxation mechanisms in diamond and NaCl crystals (curves 5).
(b) Dependences of the angle θ12 for the sound wavevectors in
crystallographic directions like [101] (θ1 = π/4, ϕ1 = 0) on the
angle ϕ2 according to equation (19): the SSS relaxation mechanisms
in Ge (curves 1 and 1a) and Si (3); the SFF relaxation mechanisms in
Ge (curves 2) and Si (curves 4).

Gaussian function:

δ (F (x, ϕ2, θ1, ϕ1)) = 1

π
lim
ε→0

ε

(F (x, ϕ2, θ1, ϕ1))
2 + ε2

,

δ (F (x, ϕ2, θ1, ϕ1)) = lim
ε→0

1

2
√
πε

× exp(− (F (x, ϕ2, θ1, ϕ1))
2 /4ε).

(21)

The numerical analysis demonstrates that both approximations
give the same results, but the Gaussian provides a better
approximation of the δ-function in calculating the relaxation
rates as it considerably curtails the computation time. Notice
that the calculated values of αλTLL(θ1, ϕ1) for the Landau–
Rumer mechanism in the variant (21) with the damping are

8
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in agreement with the exact calculations to within the error,
which is not over 0.1% at ε = 10−4 [2]. The point is that
S∗∗

TLL(x, ϕ2, θ1, ϕ1) � 1 for the Landau–Rumer mechanism.
The energy conservation law is fulfilled both in the isotropic
approximation and with the exact consideration of the cubic
anisotropy. With this mechanism, �L(θ1, ϕ1, θ2, ϕ2) is a
smooth function of the angles and equation (19) possesses one
or two solutions at different θ1 and ϕ1, while the intervals of
the angles ϕ2, over which roots are available, are sufficiently
large [2]. Unlike this case, the functions having alternating
sign �λ2 for the SFF and SSS mechanisms change abruptly
with the angles θ2 and ϕ2 over some intervals of the angles
θ1 (ϕ1 = 0, π/4). The number of roots of equation (19)
is much larger than unity, while the intervals of the angles
ϕ2, over which some of the roots are available, are narrow.
At ϕ2 = π/4 and θ2 = θ111 the function �t2(θ1, ϕ1, θ2, ϕ2)

has a finite discontinuity related to the point of intersection
between the spectra of quasi-transverse modes, while the
function dF(x,ϕ2,θ1,ϕ1)

dx has an infinite discontinuity at this point.
In these circumstances the numerical integration of (20) using
the root calculation procedure gives the function αt2

SSS(θ1, ϕ1)

as a ‘comb’ over some intervals of the angles θ1. Therefore,
the introduction of a small, but finite, damping of the phonon
states for the SSS mechanism is a necessary procedure.
In ideal crystals the damping of phonon states is due to
anharmonic scattering processes. According to experimental
studies [23–25], anharmonic processes make the dominant
contribution to the ultrasound absorption at T > 10 K. When
T ∼ 100 K and ω ∼ 1 GHz, the parameter ωλqτ2 ≈ 1, while
at higher temperatures the Landau–Rumer regime ωλqτ2 < 1 is
replaced by the Akhiezer regime ωλqτ2 > 1 [26]. In this case,
the frequency and temperature dependences of the ultrasound
absorptions change qualitatively. The estimates made from
measurements of the ultrasound absorptions [15–17] show that
in the anharmonic scattering regime the values of the parameter
(ωλqτ2)

−1 fall within the interval of 10−3–10−1. Therefore, the
physically reasonable limit of the parameter ε ≈ (ωλqτ2)

−1

for the SSS and SFF mechanisms is 10−6. The values of
αt2

SFF(θ1, ϕ1) calculated in this variant for the SFF mechanism
agree with those calculated by formulae (17) and (18) to within
the error, which is not over 1% for the SFF mechanism; the
maximum error is not over 10% for the SSS mechanism. An
exception to this rule is the [001] direction for the scattering
of collinear phonons. In this case, the square of the matrix
element (11) identically becomes zero. Therefore, if the
energy conservation law is fulfilled exactly, the absorptions
αt2

SSS(0, 0) and αt2
SFF(0, 0) turn to zero provided solutions

corresponding to the interaction of noncollinear phonons are
unavailable. However, the consideration of the small, but finite,
damping leads to negligibly small, but finite, values of these
quantities because of the small-angle scattering of phonons.
In what follows we shall discuss the role of the interaction
between collinear and noncollinear phonons in the ultrasound
absorption as applied to each of the crystals studied.

Before analyzing the angular dependences of the
relaxation, some comments should be made with respect
to polarization vectors of quasi-transverse modes in cubic
crystals. The point is that formulae (6) define components

Figure 4. Angular dependences of the values (et2et2
0
) and (et2et1

0
) for

the slow mode in the Ge crystals for the angles ϕ = π/16—curve
(1), ϕ = π/8—(2), ϕ = π/6—(3), ϕ = π/4 − 0.01 (4).

of the polarization vectors to the sign. Over certain variation
intervals of the angles θ and ϕ (this interval is π/4 for the angle
ϕ) all components of the polarization vectors simultaneously
reverse sign. As can be seen from expression (13), the matrix
element for the relaxation processes (1) and (2) only includes
quadratic combinations of the polarization vectors e2 and, for
this reason, the sign reversal will not influence the matrix
element. The maximum values of longitudinal components
in the quasi-transverse modes are not over 17% in Ge, GaSb,
InSb and GaAs crystals and 27% in KCl. However, the angular
dependences of the components in the polarization vectors et1

and et2 of quasi-transverse modes and their corresponding pure
modes et1

0 and et2
0 differ more considerably. This is illustrated

in figure 4 by the angular dependences of (et2et2
0
) and (et2et1

0
)

characterizing the deviation of polarization vectors in a cubic
crystal from polarization vectors of pure modes. It is seen from
figure 4 that in the crystals of the first type the polarization
vector of the slow mode et2 at θ → 0 tends to the vector
et2

0 lying in the plane ϕ = const; as the angle θ increases,
it leaves this plane and at θ → π/2 it tends to the vector
et1

0 , i.e. to the direction perpendicular to the plane ϕ = const.
Therefore, at 0 < θ1 < θ111 the value of (et2et2

0
) differs little

from unity. Still, at the angles θ111 < θ1 < π/2 the error of
replacing et2 by et2

0 reaches 100%. The polarization vector of
the fast quasi-transverse mode et1 exhibits a similar behavior:
when θ → 0, it tends to the vector et1

0 , i.e. to the direction
perpendicular to the plane ϕ = const. As the angle θ increases,
the vector deviates from the vector et1

0 and at θ → π/2 it tends
to the vector et2

0 , i.e. passes to the plane ϕ = const (see [19],
figure 4). The closer the angle ϕ approaches π/4, the more
abruptly the angular dependences of the polarization vectors
change in the vicinity of the angle θ = θ111 (see figure 4).
For the wavevectors lying in the diagonal plane (ϕ1 = π/4)
in the crystals of the first type the slow mode t2 at the angles
0 < θ1 < θ111 and π − θ111 < θ1 < π is a quasi-transverse
mode with the polarization vector et2

q1 lying in the diagonal
plane, while at the angles θ111 < θ1 < π − θ111 it is a
pure mode with the polarization vector perpendicular to the
diagonal plane (et2

q1 = (−1/
√

2, 1/
√

2, 0)). The situation

9
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Table 2. Parameters determined for quasi-transverse ultrasound absorption for SSS and SFF relaxation mechanisms in the crystals under
study.

At2
SFF(θ1, ϕ1)× 105 (db (cm K−5)−1) At2

SSS(θ1, ϕ1)× 105 (db (cm K−5)−1)
At2

0TTT × 105

(db K−5 cm3 dyn−2)
[001] [001] [101] [111] [001] [101] [111]

Ge 7.59 0.003 1.94 3.06 2.832 12.49 3.52
Si 0.62 2.8 × 10−4 0.199 0.27 0.32 0.002 0.31
Diamond 7.1 × 10−5 1.4 × 10−6 5.4 × 10−4 6.3 × 10−4 4.6 × 10−5 0 6.97 × 10−4

InSb 480.6 0.13 58.5 109.97 92.74 454.07 92.3
KCl 1.5 × 105 26.9 39.97 563.8 46.2 136.86 603.4
NaCl 5.4 × 103 0.14 15.8 75.6 0.59 5.16 69.1

is reverse in the crystals of the second type [19]. Therefore, the
use of the pure mode approximation [15–17] can lead to large
errors in the angular dependences of the relaxation rates for
the TTT mechanisms. We shall show below that the behavior
of the polarization vectors, which is noted in [19], causes the
appearance of special features in the angular dependences of
the relaxation rates for the TTT mechanisms in directions like
[111].

3. Results of the numerical analysis

From formulae (9)–(15) and (19)–(21) it is possible to calculate
the absorption At2

TTT(θ1, ϕ1) characterizing the dependence
of the ultrasound absorption on the direction of the sound
wavevector for the TTT mechanisms. We shall compare the
contributions from the SSS and SFF mechanisms and the
contribution from the Landau–Rumer mechanism [2], and find
the full absorption of quasi-transverse ultrasound of the ST
mode:

αt2(z1, T, θ1, ϕ1) = αt2
SSS + αt2

SFF + αt2
TLL

= At2(θ1, ϕ1)z1T 5(dB cm−1), (22)

At2(θ1, ϕ1) = At2
SSS(θ1, ϕ1)+ At2

SFF(θ1, ϕ1)+ At2
TLL(θ1, ϕ1)

= At2
0TTT(J

t2
SSS(θ1, ϕ1)+ J t2

SFF(θ1, ϕ1))

+ A0TLL J t2
TLL(θ1, ϕ1).

At2
0TLL = 4.34π3k5

B

15h̄4ρ3 (St2(θ1, ϕ1))
2 〈SL 〉8

,

At2
0TTT/At2

0TLL = 〈SL 〉8

(St
100)

8
≈

(
c11

c44

)4

.

(23)

The quantity At2(θ1, ϕ1) characterizes the anisotropy of the full
absorption of the mode t2. The corresponding dependences are
calculated for the two most important cases, when the phonon
wavevectors lie in the planes of the cube faces or the diagonal
planes. The calculations are made using experimental values of
thermodynamic elastic moduli of the second ci j and the third
ci jk order adopted from [4, 27] (see table 1).

Figures 5 present the absorption of quasi-transverse
ultrasound in cubic crystals of Ge, Si and InSb for the SSS and
SFF mechanisms in the pure mode approximation as calculated
by formulae (17) (curves 1′ and 2′) and taking exactly into
account the polarization vectors (curves 1 and 2). In the
[001] and [101] directions the roughly calculated values of

αt2
SSS(θ1, ϕ1) and αt2

SFF(θ1, ϕ1) for the wavevectors of phonons
in the planes of the cube faces differ from those calculated
exactly by less than 2.5 times. For example, this relationship
for αt2

SSS(θ1, ϕ1) is 2.4, 2.5 and 1.8 in directions like [001] and
2.1, 1.1 and 1.4 in directions like [101] for Ge, Si and InSb
crystals respectively. However, the comparison of curves 1, 2
and 1′, 2′ shows that the pure mode approximation does not
provide the correct description of the angular dependences of
the absorption of quasi-transverse modes via the SSS and SFF
mechanisms in cubic crystals. It disturbs the cubic symmetry
for the absorption: in the [001] and [100] directions the values
of αt2

SSS(θ1, ϕ1) and αt2
SFF(θ1, ϕ1) coincide (curves 1 and 2)

when the polarization vectors are taken into account exactly,
whereas they differ by nearly one order of magnitude when the
pure mode approximation is used. Thus, this approximation is
not correct for the quantitative description of the anisotropy of
ultrasound absorption in cubic crystals.

Analyzing the calculation results, we shall note, in the first
place, some characteristic features determining the efficiency
of the relaxation mechanisms at hand in the crystals under
study. Firstly, in all the crystals studied, except diamond, the
total contribution of the SSS and SFF relaxation mechanisms to
the absorption is considerably larger than the contribution from
the Landau–Rumer mechanism: several times or one to two
orders of magnitude depending on the direction (see figures 5–
8). The dominance of the SSS and SFF relaxation mechanisms
over the Landau–Rumer mechanism is due in large measure to
the second-order elastic moduli. As is clear from (23) the ratio
of At2

0TTT and At2
0TLL in the TTT and Landau–Rumer relaxation

mechanisms is proportional to (c11/c44)
4, which is much larger

than unity. This ratio is 26, 32, 16 and 48 for the crystals
of the first group (Ge, Si, diamond and InSb respectively).
Notice that the coefficient At2

0TTT is 715 and 154 times higher
than At2

0TLL in the ionic KCl and NaCl crystals respectively.
Such a large excess of At2

0TTT over At2
0TLL, which characterizes

the absorption via the Landau–Rumer mechanism, in the KCl
crystal is due to anomalously small values of the second-
order elastic moduli cik determining the propagation rate of
transverse phonons (see table 1). In the crystals of the first
type the absorptions αt2

SSS(θ1, ϕ1) and αt2
SFF(θ1, ϕ1) decrease in

directions like [001] nearly by one order of magnitude in going
from Ge to Si and two orders of magnitude in going from
Si to diamond. This decrease is due mainly to the change
of the coefficient At2

0TTT, which depends on the second-order
elastic moduli (see table 2). The coefficient At2

0TTT decreases
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Figure 5. Angular dependences of the absorptions of the slow quasi-transverse mode in Ge (a), Si (b), InSb (c) and diamond (d) crystals with
wavevectors in the cube face plane: the SSS relaxation mechanism (curve 1), the SFF relaxation mechanism (curve 2), the Landau–Rumer
mechanism (curve 3), and the full quasi-transverse ultrasound absorption (curve 4). The dashed curves 1′ and 2′ denote the absorptions in Ge,
Si and InSb crystals as calculated in the pure mode approximation from formulae (17) for the SSS and SFF mechanisms respectively.

by one order of magnitude in going from Ge to Si and four
orders of magnitude in going from Si to diamond. However, in
diamond crystals the two orders of magnitude of the absorption
coefficient are compensated by large values of the third-order
elastic moduli, which determine the probability of anharmonic
scattering processes (see table 1).

Secondly, in Ge, Si, InSb and KCl, which are crystals
with a significant anisotropy of the elastic energy, the SSS
mechanism is more efficient than the SFF mechanism (see
Table 2). It largely determines the total absorption of the
slow quasi-transverse mode in Ge, Si, InSb and KCl. The
dominance of the SSS relaxation mechanism over SFF is
explained by the fact that the denominator of the integral
J t2

SSS(θ1, ϕ1) includes the phase velocity of the slow mode
St2(θ2, ϕ2) to the eighth power, whereas J t2

SFF(θ1, ϕ1) includes

the phase velocity of the fast mode St1(θ2, ϕ2) to the eighth
power (see formula (11)), with St2(θ2, ϕ2) � St1(θ2, ϕ2).
Table 4 gives the ratios of the average velocities of the fast
and slow modes to the eighth power for all the crystals under
study. For example, this ratio is six in KCl.

Thirdly, the angular dependences of the absorption of
the slow quasi-transverse mode in the cubic crystals of
the first type (�C > 0, Ge, Si, diamond and InSb)
are qualitatively different for the TTT and Landau–Rumer
relaxation mechanisms (see figures 5). In the crystals of the
first type (Ge, Si, diamond and InSb) the maximum values
of the absorption αt2

TLL(θ1, ϕ1) are reached in crystallographic
directions like [001] (Ge, Si and diamond) or directions close
to [001] (InSb), whereas its minimum values are reached
in directions like [101] and [111]. Oppositely, in the case
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Figure 6. Angular dependences of the absorption of the slow quasi-transverse mode in the KCl (a) and NaCl (b) crystals with the wavevector
in the cube face plane: the SSS relaxation mechanism (curve 1), the SFF relaxation mechanism (curve 2), the Landau–Rumer mechanism
(curve 3) and full quasi-transverse ultrasound absorption (curve 4).

of the TTT relaxation mechanism the minimum values of
the absorptions αt2

SSS(θ1, ϕ1) and αt2
SFF(θ1, ϕ1) are reached

in directions like [001], while their maximum values are
realized in crystallographic directions like [101] and [111] or
directions close to them. Thus, the angular dependences of
the absorptions via the TTT and Landau–Rumer relaxation
mechanisms in the crystals of the first type are reversed. The
SSS relaxation mechanism makes the dominant contribution
to the absorption in all directions of the wavevector in KCl
crystals. It is several times larger than the contribution from
the SFF relaxation mechanism and two orders of magnitude
larger than that from the Landau–Rumer mechanism. By
contrast, in NaCl crystals the contribution from the Landau–
Rumer mechanism dominates in the [001] directions, while
over a large interval of angles the full absorption is determined
by the total contribution from the SFF and SSS relaxation
mechanisms.

Let us discuss in more detail the anisotropy of the
absorption of the slow quasi-transverse mode t2 when the
wavevectors q1 and the polarization vectors of the sound wave
lie in the cube face plane (ϕ1 = 0) (see figures 5 and 6).
It is seen from these figures that with the dominant role of
anharmonic scattering processes the consideration of one of the
TTT or Landau–Rumer relaxation mechanisms is insufficient
for the quantitative description of the anisotropy of relaxation
rates in the cubic crystals. For example, the contributions
of the SSS, SFF and Landau–Rumer mechanisms to the full
absorption in directions of the [001] type in the crystals of
the first type are 72.6%, 0.1% and 27.3% in Ge, 86.4%,
0.1% and 13.5% in Si, and 95.3%, 0.1% and 4.6% in InSb
respectively. It follows from the solution to equation (19) that
in directions of the [001] type the SFF relaxation mechanism
can only involve collinear phonons (θ12 = 0). In this case,
the square of the matrix element (15) identically turns to zero
(see figure 1(a)). Therefore, if the energy conservation law is

fulfilled exactly, the absorption of the quasi-transverse mode
αt2

SFF(0, 0) turns to zero. However, the consideration of the
small, but finite, damping (ε = 10−6) leads to a negligibly
small, but finite, value of αt2

SFF(0, 0). For the SSS relaxation
mechanism the energy conservation law allows the interaction
of both collinear and noncollinear phonons in directions like
[001] (see figure 3(a)). The contribution from the interaction
of collinear phonons to the absorption is negligibly small.
In the case of noncollinear phonons the integral J t2

SSS(0, 0)
in Ge crystals is 9.8 times smaller than the corresponding
integral J t2

TLL(0, 0) for the Landau–Rumer mechanism, but the
coefficient At2

0TTT is 26 times larger than At2
0TLL. Therefore the

absorption αt2
SSS(0, 0) is almost three times larger than it is via

the Landau–Rumer mechanism. In Ge, Si and InSb crystals
the absorption αt2

TLL(θ1, 0) is the minimum in directions like
[101] (θ1 = π/4), while the dominant contribution to the
full absorption is made by the TTT relaxation mechanisms,
which change qualitatively the angular dependences αt2(θ1, 0)
as compared to those in the Landau–Rumer mechanism. In
these directions the full absorption reaches the maximum
in Ge crystals, a local maximum in InSb crystals, and the
minimum in Si (see figures 5(a), (b) and (c), curves 4).
The contributions from the SSS, SFF and Landau–Rumer
relaxation mechanisms to the full absorption are 85.2%, 13.2%
and 1.6% in Ge, 0.9%, 90%, and 9.1% in Si and 88.3%, 11.3%
and 0.4% in InSb respectively. The considerable change in the
contributions from the SSS and SFF relaxation mechanisms
in going from Ge to Si crystals is due to the decrease in the
cubic anisotropy, namely the parameter k −1 (see table 1). It is
seen from figure 3(b) that the solutions to equation (19), which
correspond to the scattering to large angles in Ge crystals,
are absent for Si crystals and the range of other roots for Si
is narrow. Therefore the value of the integral J t2

SSS(π/4, 0)
in Si becomes four orders of magnitude smaller than it is in
Ge. While the coefficient At2

0TTT is 32 times larger than At2
0TLL
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in Si, the value of αt2
SSS(π/4, 0) proves to be two orders of

magnitude smaller than αt2
TLL(π/4, 0) (see figure 5(b), curves

1 and 3). On the other hand, the range of the roots for
equation (19) corresponding to the interaction of noncollinear
phonons is much wider for the SFF relaxation mechanism.
Therefore, the SFF relaxation mechanism dominates in Si
and its contribution is ten times larger than the contribution
from the Landau–Rumer mechanism. The ratio between the
values of αt2(π/4, 0) and αt2(0, 0) corresponding to the [001]
directions is 3.8, 0.6 and 5.3 in Ge, Si and InSb respectively.
The maximum values of the full absorption αt2(θ1, 0) in InSb
crystals are reached in directions close to [101] at θ1 = π/4±
0.13 and are seven times larger than αt2(0, 0).

The cubic anisotropy parameter k − 1 is much smaller in
diamond than it is in Ge and InSb crystals and, hence, the TTT
relaxation mechanisms are less significant for diamond. The
full absorption αt2(θ1, 0) is determined to a large extent by the
Landau–Rumer mechanism. The consideration of the SSS and
SFF relaxation mechanisms gives rise to additional features in
the dependence of αt2(θ1, 0) on the angle θ1 (see figure 5(d),
curves 1, 2 and 4). The Landau–Rumer mechanism makes the
dominant contribution to the ultrasound absorption in the [001]
directions. The solution to equation (19) for these directions
suggests that the SSS and SFF relaxation mechanisms can only
involve collinear phonons (θ12 = 0). Therefore, if the energy
conservation law is fulfilled exactly, the absorptions αt2

SSS(0, 0)
and αt2

SFF(0, 0) turn to zero. However, the consideration of the
small, but finite, damping leads to negligibly small, but finite,
values of these quantities because of the small-angle scattering.
As a result, in the [001] directions at ε = 10−6 the contribution
of the Landau–Rumer mechanism to the full absorption is 40
times larger than the total contribution from the SSS and SFF
relaxation mechanisms. The full absorption in this direction
αt2(0, 0) has a local minimum because the absorption via the
SSS mechanism reaches its maximum values in directions
close to [001] (θ1

∼= π/2n ± 0.2). These maxima are due
to the interaction of noncollinear phonons. They are 2.8 times
smaller than αt2

TLL(0, 0), but lead to the formation of maxima
in the full absorption αt2(θ1, 0) at the angles θ1

∼= π/2n ±
0.16. The maxima are a factor of 1.1 larger than the value of
αt2(0, 0). At the angles π/6 < θ1 < π/3 equation (19) does
not possess a solution for the SSS mechanism and αt2

SSS(θ1, 0)
is zero (see figure 5(d), curves 1). The SFF mechanism
dominates over this interval. The ultrasound absorption for
this mechanism reaches its maximum values in directions
like [101] and causes the formation of a local maximum in
the dependence of the full absorption αt2(θ1, 0). The value
of αt2(π/4, 0) proves to be 2.6 times smaller than that of
αt2(0, 0). The function αt2(θ1, 0) in diamond reaches its equal
minimum values at the angles θ1

∼= π/6 and θ1
∼= π/3 and

these minimum values are 3.2 times smaller than the values of
αt2(0, 0). A strong dependence of the ultrasound absorption
αt2

SSS(θ1, 0) in directions of the [101] type on the parameter
k − 1 is noteworthy in Ge, Si and diamond crystals. In Ge
the parameter k − 1 = 0.87 and the absorption αt2

SSS(π/4, 0)
has a maximum, which is 52 times larger than αt2

TLL(π/4, 0). In
Si the parameter k − 1 = 0.67 and the absorption αt2

SSS(π/4, 0)
has a deep minimum, while αt2

SSS(π/4, 0) is 10 times smaller

Table 3. Parameters determined for quasi-transverse ultrasound
absorption for Landau–Rumer relaxation mechanism in the crystals
under study [2].

At2
TLL(θ1, ϕ1)× 105 (db (cm K−5)−1)

At2
0TLL × 105

(db K−5 cm3 dyn−2)
[001] [001] [101] [111]

Ge 0.29 1.06 0.24 0.34
Si 0.019 0.05 0.02 0.02
Diamond 4.4 × 10−6 0.0019 2 × 10−4 5.8 × 10−4

InSb 9.91 4.49 2.12 1.71
KCl 210 1.44 0.68 133.6
NaCl 34.7 1.67 2.34 41.4

than αt2
TLL(π/4, 0). In diamond the parameter k − 1 = 0.4 and

the absorption αt2
SSS(π/4, 0) = 0.

In the cubic KCl and NaCl crystals with a negative
anisotropy of the second-order elastic moduli the ratio of the
contributions from the SSS and SFF relaxation mechanisms
to the ultrasound absorption is considerably different. The
KCl crystals are most anisotropic among the crystals of the
second group. The relaxation rates αt2

SSS(0, 0) and αt2
SFF(0, 0)

in these crystals are due to the interaction of noncollinear
phonons, while the dominant contribution to the full absorption
αt2(θ1, 0) is made by the SSS mechanism. The contributions
of the SSS, SFF and Landau–Rumer relaxation mechanisms
to the full ultrasound absorption are 62%, 36% and 2% in
directions like [001], and 77%, 22.5% and 0.5% in directions
like [101]. Thus, the Landau–Rumer relaxation mechanism
makes a negligibly small contribution to the absorption of the
slow quasi-transverse mode. In KCl the full absorption reaches
its maximum values at the angles θ1

∼= nπ/2 ± 0.35 (n = 0,
1, 2, etc) and its minimum values in directions like [001]; a
local minimum is realized in the [101] directions (θ1 = π/4)
(see figure 6(a), curves 4). Oppositely, in the NaCl crystals the
Landau–Rumer mechanism dominates in the [001] directions
and the full absorption is determined by the SFF relaxation
mechanism over a wide interval of the angles 0.12< θ1 < 1.45
(see figure 6(b), curves 2, 3 and 4). In the [001] directions the
SSS and SFF relaxation mechanisms can only involve collinear
phonons (θ12 = 0). Therefore, if the energy conservation law
is fulfilled exactly, the absorptions αt2

SSS(0, 0) and αt2
SFF(0, 0)

turn to zero in the NaCl crystals. However, taking into account
an insignificant damping, they become nonzero because of
the small-angle scattering. At ε = 10−6 the contribution
from the Landau–Rumer mechanism to the full absorption is
2.3 times larger than the total contribution from the SSS and
SFF relaxation mechanisms (see table 3). The absorptions
αt2

SSS(θ1, 0) and αt2
TLL(θ1, 0) reach their maxima in directions

like [101] (θ1 = π/4). For the Landau–Rumer mechanism, the
absorption αt2

SSS(π/4, 0) is 2.2 times higher than αt2
TLL(π/4, 0).

In the NaCl crystals the full absorption αt2(θ1, 0) reaches its
maximum values at the angles θ1

∼= nπ/2 ± 0.24 (n = 0, 1, 2,
etc), while a local maximum is realized in the [101] directions
(θ1 = π/4) (see figure 6(b), curve 4). In the KCl and NaCl
crystals the full ultrasound absorption αt2(θ1, 0) reaches its
minimum values in directions of the [001] type (see table 3).
It should be noted that the anisotropy of the full absorption
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Figure 7. Angular dependences of the absorption of the slow quasi-transverse mode in the Ge (a), Si (b), InSb (c) and diamond (d) crystals
with the wavevector in the diagonal plane: the SSS relaxation mechanism (curve 1), the SFF relaxation mechanism (curve 2), the
Landau–Rumer mechanism (curve 3) and full quasi-transverse ultrasound absorption (curve 4).

αt2(θ1, 0) is considerably different from the anisotropy of the
ultrasound absorption via the Landau–Rumer mechanism. For
example, the ratio of αt2(π/4, 0) and αt2(0, 0) is 2.4 and
9.7 in KCl and NaCl respectively. For the Landau–Rumer
mechanism, the ratio of αt2

TLL(π/4, 0) and αt2
TLL(0, 0) equals

0.5 and 1.4 in KCl and NaCl respectively.
The angular dependences of the absorptions αt2

SSS(θ1, π/4),
αt2

SFF(θ1, π/4) and αt2(θ1, π/4) in the crystals of the first and
second types are more complicated for sound wavevectors ly-
ing in the diagonal plane (ϕ1 = π/4) (see figures 7 and 8). This
is due to both the presence of the intersection point of the spec-
tra of quasi-transverse modes and the behavior of the polariza-
tion vectors of the slow mode [19]. As mentioned above, in the
crystals of the first type the slow mode t2 is a quasi-transverse
mode with the polarization vector lying in the diagonal plane
at the angles 0 < θ1 < θ111 and π − θ111 < θ1 < π , while

it is a pure mode with the polarization vector perpendicular to
the diagonal plane at the angles θ111 < θ1 < π − θ111. In the
crystals of the second type these intervals of the angles change
places (for details see [19]). In this connection, the angular
dependences of the absorptions αt2

SSS(θ1, π/4), αt2
SFF(θ1, π/4)

and αt2(θ1, π/4) in directions like [111] exhibit singularities:
sharp local minima are observed in the crystals of the first type
(Ge, Si, diamond and InSb) and the NaCl crystal of the sec-
ond type, whereas an absolute maximum is realized in the KCl
crystal for the SFF mechanism and a local minimum for the
SSS relaxation mechanism.

As can be seen from figures 7(a), (b) and (c), in the
case at hand (ϕ1 = π/4) the angular dependences of the
absorptions αt2

SSS(θ1, π/4), αt2
SFF(θ1, π/4) and αt2(θ1, π/4) are

qualitatively similar in the Ge, Si and InSb crystals. The SSS
relaxation mechanism dominates over the whole interval of
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Figure 8. Angular dependences of the absorption of the slow quasi-transverse mode in the KCl (a) and NaCl (b) crystals with the wavevector
in the diagonal plane: the SSS relaxation mechanism (curve 1), the SFF relaxation mechanism (curve 2), the Landau–Rumer mechanism
(curve 3), and full quasi-transverse ultrasound absorption (curve 4).

Table 4. Parameters determined for full quasi-transverse ultrasound absorption in the crystals under study.

At2(θ1, ϕ1)× 105 (db (cm K−5)−1)

[001] [101] [111] (〈st1〉/〈st2〉)8
At2

0TTT/At2
0TLL

[001]

Ge 3.88 14.67 6.92 2.8 26
Si 0.37 0.22 0.6 2.5 32
Diamond 0.00195 7.4 × 10−4 0.00191 1.5 16
InSb 97.4 514.3 204 3.7 48
KCl 74.5 177.5 1.3 × 103 5.96 715
NaCl 2.4 23.3 186.1 2.0 154

the angles θ1 and the values of the absorptions αt2(θ1, π/4)
and αt2

SSS(θ1, π/4) are nearly equal (see figures 7(a), (b) and
(c), curves 1 and 4). The absorptions αt2

SSS(θ1, π/4) and
αt2(θ1, π/4) are minimum in directions like [001] and [111],
in directions close to [011], and at θ1

∼= π/6. The functions
αt2(θ1, π/4) reach their absolute minima at the angles θ1

∼=
π/6 and these minima are 1.5, 1.8 and 1.1 times smaller
than those of αt2(0, π/4) in Ge, Si and InSb respectively.
The contribution from the Landau–Rumer mechanism is 27%,
13% and 4.6% in directions like [001] in Ge, Si and InSb
respectively. In directions like [111] the contribution from
the Landau–Rumer mechanism is much smaller, while the
contributions from the SSS and SFF relaxation mechanisms
are approximately equal (see figures 7(a), (b) and (c), curves
1, 2 and 3). The maximum values of the full absorption
αt2(θ1, π/4) in Ge, Si and InSb are reached at angles close to
θ1 = π/4 and they are due to the SSS relaxation mechanism.
These values are 7.1, 6.2 and 8 times larger than those of
αt2(0, π/4) in Ge, Si and InSb respectively.

The situation with the absorptions in the diamond crystals
is considerably different for the wavevectors lying in the
diagonal plane (ϕ1 = π/4) and the cube face plane (ϕ1 =
0). The Landau–Rumer mechanism makes the dominant
contribution to the full absorption in directions like [001]

and this contribution is the maximum in the [001] direction.
However, the total relaxation rate has a local minimum in
this direction. The absolute maximum of the full absorption
αt2(θ1, π/4) is realized at the angles θ1

∼= π/4 and is due
to the SSS relaxation mechanism. It is nearly twice as large
as the corresponding value for αt2(0, π/4). At the angles
π/2.6 < θ1 < π/2 the contribution from the SSS relaxation
mechanism turns to zero and the SFF mechanism dominates
(see figures 7(d), curves 1 and 2). The absorption via the
SFF mechanism reaches its maximum values in directions
close to [111]. In directions like [110] (θ1

∼= π/2) the
full absorption αt2(θ1, π/4) reaches its minimum value and
the contribution from the SFF mechanism is 2.7 times larger
than the contribution from the Landau–Rumer mechanism. In
diamond the function αt2(θ1, π/4) has a local maximum at
θ1

∼= 1.07 and three local minima at θ1
∼= π/2, θ1 = θ111

and θ1
∼= 0.43.

In the KCl and NaCl crystals the absorption anisotropy
for the wavevectors lying in the diagonal plane (ϕ1 = π/4)
is much larger than that for the wavevectors in the cube face
plane (see figures 8, curves 4). In these crystals the full
absorption reaches its minimum values in directions like [001]
(θ1 = 0). In the KCl crystals the values of αt2(0, π/4) depend
on the total contribution from the SSS and SFF relaxation
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mechanisms, whereas in the NaCl crystals they are determined
by the Landau–Rumer mechanism. The absolute maxima of
the full absorption αt2(θ1, π/4) are due to the SSS relaxation
mechanism and are realized at the angles θ1

∼= 1.2 and 1.15
in the KCl and NaCl crystals respectively. They are 33 and
240 times larger than the minimum values of αt2(0, π/4) in
KCl and NaCl respectively. Moreover, in the KCl crystals the
function αt2(θ1, π/4) has local maxima at the angles θ1 = θ111

and θ1
∼= 0.6 and these maxima are 21 and 22 times larger

than those of αt2(0, 0). The first maximum results from the
SFF relaxation mechanism, while the second maximum is due
to the SSS relaxation mechanism. As distinct from KCl, in the
NaCl crystals the full absorption αt2(θ1, π/4) in directions like
[111] and the values of αt2

SSS(θ1, π/4) and αt2
SFF(θ1, π/4) have

sharp local minima, similarly to the crystals of the first group
(see figure 8(b), curves 1, 2 and 4). The value of αt2(θ111, π/4)
is 78 times larger than the minimum values of αt2(0, π/4)
in directions like [001]. The contributions from the SSS,
SFF and Landau–Rumer mechanisms to the full absorptions in
directions like [111] are 47%, 43% and 10% in the KCl crystals
and 37%, 41% and 22% in the NaCl crystals.

Thus, the absorptions are the maximum in the KCl and
InSb crystals among those studied: the coefficient At2(θ1, π/4)
is as high as 2520 (dB cm−1 K−5) at the angles θ1

∼= 1.19 in
KCl and 820 (dB cm−1 K−5) at the angles θ1

∼= π/4 in InSb.
The absorptions are the minimum in the diamond crystals:
coefficient At2(θ1, 0) = 0.0006(dB cm−1 K−5) at θ1 equal to
π/6 and π/3.

4. Conclusion

The absorption of quasi-transverse ultrasound during anhar-
monic scattering processes in cubic crystals with a positive
(Ge, Si, diamond and InSb) and a negative (KCl and NaCl)
anisotropy of the second-order elastic moduli was studied. The
absorption of slow quasi-transverse modes via the SSS, SFF
and Landau–Rumer relaxation mechanisms was discussed.
The angular dependences of the absorptions of the slow quasi-
transverse modes for the SSS and SFF relaxation mechanisms
were analyzed in the context of the anisotropic continuum
model and the full absorptions were determined. Two most
important cases when the wavevectors of phonons are in the
planes of the cube faces or in the diagonal planes were consid-
ered. It was shown that the pure mode approximation cannot
be adequately used for the quantitative description of the ultra-
sound absorption anisotropy in cubic crystals. The main results
of the study can be formulated as follows:

(1) The absorptions of quasi-transverse ultrasound in cubic
crystals are calculated for the SSS and SFF relaxation
mechanisms in a long-wavelength approximation. It is
shown that in crystals with a considerable anisotropy
of the elastic energy (Ge, Si, InSb, KCl and NaCl)
the total contribution from the SSS and SFF relaxation
mechanisms to the ultrasound absorption is several
times or one to two orders of magnitude larger than
the contribution from the Landau–Rumer mechanism
depending on the direction. The dominance of the SSS
and SFF relaxation mechanisms over the Landau–Rumer

mechanism is explained, to a large extent, by the second-
order elastic moduli. The role of the Landau–Rumer
mechanism in the ultrasound absorption is considerable in
diamond crystals with a smaller anisotropy of the elastic
energy.

(2) The full absorptions of slow quasi-transverse modes are
determined. Other variants of the ST mode relaxation,
except the ones considered above, leading to the
dependence of the Landau–Rumer type are unavailable.
It is shown that with the anharmonic scattering processes
playing the dominant role, the consideration of one of the
relaxation mechanisms—the Landau–Rumer mechanism
or the SSS or SFF mechanism—is insufficient for
describing the anisotropy of the full ultrasound absorption
in cubic crystals.

(3) In Ge, Si, InSb and KCl crystals the contribution from
the SSS mechanism is times or orders of magnitude
larger than the contribution from the SFF mechanism. In
diamond and NaCl crystals the two contributions are of
the same order of magnitude. The dominance of the SSS
mechanism over SFF is due mainly to the second-order
elastic anisotropy, i.e. the relation between the second-
order elastic moduli.

(4) It is shown that the SSS and SFF relaxation mechanisms
are due to the cubic anisotropy of the crystals leading to
the interaction of noncollinear phonons.

(5) The analysis of three-phonon scattering processes via the
SSS and SFF relaxation mechanisms in cubic crystals
demonstrated that the square of the matrix element turns
to zero during the scattering of collinear phonons when the
slow ST mode is a purely transverse mode and is nonzero
when the slow ST mode is quasi-transverse. The behavior
of the square of the matrix element during the scattering of
collinear phonons is qualitatively different in the crystals
of the first and second groups.

(6) It is found that the presence of intersection points of the
spectra of quasi-transverse modes and a sharp change
of the polarization vectors near the [111] directions give
rise to strong singularities in the absorptions of quasi-
transverse ultrasound in the vicinity of these directions.

(7) The SSS and SFF relaxation mechanisms can involve
collinear phonons in directions like [001]. However, in
this case the square of the matrix element identically turns
to zero as in the isotropic medium model. Therefore the
absorptions of the slow quasi-transverse mode, αt2

SSS(0, 0)
and αt2

SFF(0, 0), become zero if the energy conservation
law is fulfilled exactly. If small damping is considered,
they become nonzero due to the small-angle scattering of
phonons.
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Appendix A. The energy conservation law and the
group velocity of phonons in cubic crystals

Let us compare the expressions used in [15–17] for the
analysis of the energy conservation law with the function
Fλ1λ2(θ2, ϕ2, θ1, ϕ1), which we have introduced in accordance
with (19). In a long-wavelength approximation (q1 → 0) the
function �λ1λ2 , which is given by

�λ1λ2 =
(
ωλ1

q1
+ ωλ2

q2
− ω

λ2
q1+q2

)

= ωλ1
q1

[
1 − ω

λ2
q1+q2

− ωλ2
q2

ω
λ1
q1

]
, (A.1)

can be expressed in terms of the group velocity of phonons
V λ2

g2 :

�λ1λ2 = ωλ1
q1

Wλ1λ2 (θ1, ϕ1, θ2, ϕ2) ,

Wλ1λ2 (θ1, ϕ1, θ2, ϕ2) = 1 − 1

Sλ1(θ1, ϕ1)

(
Vλ2

g2(θ2, ϕ2) · n1

)
.

(A.2)
The group velocity of phonons can be written in the form

V λ2
g2
(θ2, ϕ2) = Sλ2(θ2, ϕ2)

{
n2 + Sλ2

θ2
eθ2 + Sλ2

ϕ2
eϕ2

}
, (A.3)

where

n2 = {sin θ2 cosϕ2, sin θ2 sinϕ2, cos θ2} ,
eθ2 = {cos θ2 cos ϕ2, cos θ2 sinϕ2,− sin θ2},

eϕ2 = {− sinϕ2, cos ϕ2, 0} ,

Sλ2
θ2

= 1

Sλ2

∂Sλ2

∂θ2
= ∂

∂θ2
ln Sλ2,

Sλ2
ϕ2

= 1

sin θ2

1

Sλ2

∂Sλ2

∂ϕ2
.

(A.4)

It is easy to verify that the vectors n2, eθ2 and eϕ2 form
a mutually orthogonal system of unit vectors. In arbitrary
directions of unit wavevectors of phonons n1 and n2 we have

Wλ1λ2 (θ1, ϕ1, θ2, ϕ2) = 1 − Sλ2(θ2, ϕ2)

Sλ1(θ1, ϕ1)

× {
cos θ12 + Sλ2

θ2
(θ2, ϕ2)[sin θ1 cos θ2 cos(ϕ2 − ϕ1)

− sin θ2 cos θ1] + Sλ2
ϕ2
(θ2, ϕ2) [sin θ1 sin(ϕ1 − ϕ2)]

}
. (A.5)

In the [001] direction (θ1 = 0, ϕ1 = 0) it follows
from (A.5) that

Wλλ2 (0, 0, θ2, ϕ2) = 1−Sλ2(θ2, ϕ2)[cos θ2 − Sλ2
θ2

sin θ2]
/

St
100.

(A.6)
Expression (A.6) is used in [15–17] for calculating the

energy conservation contours in all symmetric directions
([001], [101] and [111]). However, it holds for the [001]
direction only. Its use for the other symmetric directions, as
in [15–17], is erroneous. For example, in the [101] direction
(θ1 = π/4, ϕ1 = 0) it follows from (A.5) that

Wλ1λ2 (θ1, ϕ1, θ2, ϕ2) = 1 − Sλ2(θ2, ϕ2)√
2Sλ1(θ1, ϕ1)

× {
sin θ2 cos ϕ2+ cos θ2

+ Sλ2
θ2
(θ2, ϕ2) (cos θ2 cos ϕ2 − sin θ2)− Sλ2

ϕ2
sinϕ2

}
. (A.7)

Obviously, expressions (A.6) and (A.7) for the function
Wλ1λ2(θ1, ϕ1, θ2, ϕ2) are considerably different. Therefore,
the analysis of the conservation law and the ultrasound
absorptions [15–17] in the [101] and [111] directions is
incorrect. Let us determine Sλθ (θ, ϕ) and Sλϕ(θ, ϕ) entering into
expressions (A.2)–(A.7):

Sλθ (θ, ϕ) = 1

Sλ
∂Sλ

∂θ
= 1

Sλ

(
∂Sλ

∂ξ

∂ξ

∂θ
+ ∂Sλ

∂η

∂η

∂θ

)
,

Sλϕ(θ, ϕ) = 1

sin θ · Sλ

(
∂Sλ

∂ξ

∂ξ

∂ϕ
+ ∂Sλ

∂η

∂η

∂ϕ

)

1

Sλ
∂Sλ

∂ξ
=

[(
St

100

Sλ

)2 c11 − c44

2c44
Zλ

]
1.5(k2 − 1)

r 2

×
{

1 − 1.5(k2 − 1)ξ + 13.5(k − 1)2(1 + 2k)

(1 − q2)1/2(r)3

× tg

(
Q

3
∓ 2π

3

) }

1

Sλ
∂Sλ

∂η
=

[(
St

100

Sλ

)2 c11 − c44

2c44
Zλ

]

× 4.5(k2 − 1)2(1 + 2k)

(1 − q2)1/2(r)3
tg

(
Q

3
∓ 2π

3

)
,

∂ξ

∂θ
= sin 2θ

[
cos 2θ + 0.5(sin θ)2(sin 2ϕ)2

]
,

∂ξ

∂ϕ
= 0.5(sin θ)4 sin 4ϕ,

∂η

∂θ
= 1

4
sin 2θ (sin θ)2

[
3(cos θ)2 − 1

]
(sin 2ϕ)2,

∂η

∂ϕ
= 1

2
(sin θ)4(cos θ)2 sin 4ϕ.

(A.8)

The expressions for Zλ, q and r are given by formulae (5).
The quantities Fλ1λ2(θ1, ϕ1, θ2, ϕ2) and �λ2(θ1, ϕ1, θ2, ϕ2)

introduced by us can be presented in terms of the above-defined
quantities in the form

Fλ1λ2 (θ1, ϕ1, θ2, ϕ2) = − Sλ1
1

Sλ2
2

Wλ1λ2 (θ1, ϕ1, θ2, ϕ2) (A.9)

�λ2 (θ1, ϕ1, θ2, ϕ2) = Sλ2
θ2

(
eθ2 n1

) + Sλ2
ϕ2

(
eϕ2n1

)

= Sλ2
θ2
(θ2, ϕ2)[sin θ1 cos θ2 cos(ϕ2 − ϕ1)+

− sin θ2 cos θ2]+Sλ2
ϕ2
(θ2, ϕ2) [sin θ1 sin(ϕ2 − ϕ1)]. (A.10)
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